
2010-01-31

Project specification

BEng Essay
KTH

 Henrik Feldt 2010

Title .Net implementation of File Transactions

Background The Castle Project is an open source project aimed at making enterprise application
development easier. As such transactions are important, but file transactions have
been lacking for a long time. The goal of a transactional file system is to satisfy the
ACID properties, i.e. transactions should be Atomic in terms of committing/rolling
back, give a Consistent view of the file system, be Isolated from each other and
Durable after commit [1]. Microsoft has implemented NTFS transactions called TxF,
but these do not have bindings for .Net, accessible to programmers in an easy-to-use
manner. What would it take to access them?

 The common language runtime (.Net/Mono/rotor) can use the API from kernel32.dll
by means of P/Invoke – a mechanism through which managed C# can invoke
unmanaged code – in this case a C-flavoured interface. I have already implemented
most of the transaction API as a class FileTransaction which interops with
System.Transactions and hence is enlisted in any current transaction scope.

 Using inversion of control1 it’s possible to wrap interceptors around instances of
services. The interceptors start and stop transactions as the wrapped objects’
methods are called – rolling the transaction back if an exception is thrown or remains
unhandled within the intercepted method body. A developer programming
operations acting on the file system would be interested in knowing the
status/structure or state of files and directories within a given transaction in which
work is being done; as such all invocations of IO-APIs would have to “know” what
transaction is being used. As .Net is not aware of file transactions, the IO interfaces
need to be implemented as aware of transactions. The grunt-work of making IO
implementations aware of file transactions has been done.

 Taking the above into consideration, the project aims to complete the
implementation, write accurate documentation and analyze the implementation in
terms of software design choices and performance.

1
 Inversion of control is a collection technology for miscellaneous object oriented practices. For example, a

competent IoC engine can facilitate disposal of object graphs in a manner consistent to how the
programmer needs the graph to behave (singleton/one-instance-only, thread-static/per-thread,
transient/one instance per call, per-web request etc), how to instantiate objects with its dependencies
(which are instances of objects), weaving together methods in a proxy – programming to interface,
interception of method calls.
http://jonathan-oliver.blogspot.com/2009/03/dddd-eric-evans-interviews-greg-young.html Accessed
2010-02-10
http://www.infoq.com/interviews/Architecture-Eric-Evans-Interviews-Greg-Young Accessed 2010-02-10

http://jonathan-oliver.blogspot.com/2009/03/dddd-eric-evans-interviews-greg-young.html
http://www.infoq.com/interviews/Architecture-Eric-Evans-Interviews-Greg-Young

2010-01-31

Abstract The project aims to complete the implementation, write accurate documentation
and analyze the implementation in terms of software design choices and
performance. Documentation will be written online at using.castleproject.org with
the report forming a complement; a project post mortem of sorts. The project will
aim to investigate state-of-the-art in the area of file transactions by relating these
new developments to the current C# implementation. Performance analysis will be
similar to stress-testing2 and load-testing3 4 but aim to create developer usage
guidelines and knowledge about costs associated with using the framework. Analysis
could also facilitate code improvements. In the end a released version of the file
transaction framework should be made available together with its online
documentation.

Plan The order of affairs is something akin to the below:

 1) Finish writing any lingering method implementations for namespaces:
Castle.Services.Transaction5, Castle.Services.TransactionMangagement6,
Castle.Facilities.AutomaticTransactionFacility7.

 2) Test the framework on non transactional systems (Mono, Windows XP)

 3) Write public documentation of the system that documents how to use the
framework classes

 4) Send press releases about the finished framework

 5) Write an essay detailing the design decisions, choke-points and a post-mortem of
the project of releasing the component.

Theme/Keys Transactional File System, Kernel, Distributed Transactions, .Net, C#, Inversion of
Control, Software Architecture

References [1]: Principles of transaction-oriented database recovery
Theo Harder, Andreas Reuter
ACM Computing Surveys (CSUR)
Volume 15 , Issue 4 (December 1983)
Pages: 287 – 317
Year of Publication: 1983

http://social.msdn.microsoft.com/forums/en-US/windowstransactionsprogramming
http://castleproject.org/castle/projects.html
http://msdn.microsoft.com/en-us/magazine/cc163388.aspx
http://higherlogics.blogspot.com/2009/11/easy-file-system-path-manipulation-in-
c.html
http://www.links.org/files/capabilities.pdf
http://en.wikipedia.org/wiki/P/Invoke
http://groups.google.com/group/castle-project-devel

Supervisor Mads Dam

2
 Spike drive-usage/CPU-usage by pushing as much load as the system can take onto it, to test against

deadlocks, livelock, memory leakages, race-conditions and other programming flaws.
3
 Test the system under load for a prolonged period (usually hours) to check against memory leakages and

stability-problems, but leave some “breathing room”, i.e. don’t push the system to its limits.
4
 http://www.youtube.com/watch?v=XQ5NvCpQnqg

5
 Here are implementations

6
 This is for transaction management; threads, contexts etc

7
 This is for inversion of control

http://social.msdn.microsoft.com/forums/en-US/windowstransactionsprogramming
http://castleproject.org/castle/projects.html
http://msdn.microsoft.com/en-us/magazine/cc163388.aspx
http://higherlogics.blogspot.com/2009/11/easy-file-system-path-manipulation-in-c.html
http://higherlogics.blogspot.com/2009/11/easy-file-system-path-manipulation-in-c.html
http://www.links.org/files/capabilities.pdf
http://en.wikipedia.org/wiki/P/Invoke
http://groups.google.com/group/castle-project-devel
http://www.youtube.com/watch?v=XQ5NvCpQnqg

